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Abstract 

This paper has two contributions: First is 
to analyze the entropy evaluation for 
random stimulus generation in one paper 
of DATE 2008 [1]; second is to present 
better methods to evaluate the solutions’ 
even distribution for random stimulus 
generation. An evaluation strategy called 
min-distance-sum takes the solution 
space as a ring and calculates the adjacent 
solutions’ distances. Experimental results 
for SAT and circuit benchmarks showed 
that our method can evaluate the even 
degree better than entropy, and also 
prove that the XOR-based method can 
improve the distribution of solutions for 
random stimulus generation. 

Keywords: Random stimulus generation, 
design verification, even distribution, 
SAT 

1. Introduction 

Functional verification has become the 
main bottleneck in the design process and 
design teams spend 50% to 70% of their 
time verifying designs. For large scale 
designs, formal verification is difficult, so 
simulation is still the main stream in 
industry. However, constrained random 
stimulus generation which is between 
formal verification and simulation is 
more and more important, especially 
during the move to high level design and 
verification [2, 3, 4, 5]. Most of 

constrained random stimulus generation 
methods are using BDD model and BDD 
random walks [3] where space explosion 
easily occurs. One substitute is to use 
SAT-based methods due to the rapid 
efficiency improvements of SAT solvers 
in the last decade [6, 7, 8]. However, 
SAT-based constrained randomization 
can not directly get even distribution [9]. 
The same problem occurs in random 
stimulus generation [10]. Fortunately, 
there have been some works using XOR 
constraints [1, 10, 11] to achieve even 
distribution. 

In [1], authors presented a tool named 
Toggle to find out inadequately 
sensitized areas during simulation and 
automatically simulate those areas with 
uniform distributed solutions. In order to 
estimate the activity and biasing of 
solutions, the authors adopted entropy. 

However, we found entropy is 
meaningless when evaluating the even 
degree of solutions. In this paper, we 
present better evaluation strategies based 
on min-distance-sum to guide the random 
stimulus generation. These strategies treat 
the solution space as a ring and calculate 
distances of adjacent solutions to ensure a 
most even distribution. 

The remainder of this paper is 
organized as follows: Section 2 describes 
some backgrounds of achieving even 
distribution in random stimulus 
generation. Shortage of entropy in [1] is 
analyzed in Section 3. Our new 
evaluation strategy is presented in 
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Section 4. In Section 5, the experiments 
and comparisons are presented. Section 6 
concludes the paper. 

2. Background 

The framework of random stimulus 
generation is shown in Figure 1. Vectors 
generated by random generator are sent 
to a design under test (DUT), then a 
monitor checks the results according to 
expected results and calculate the 
coverage. 
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Figure 1: Test framework of random stimulus 
generation 
 

Usually, the constraints in random 
stimulus generation can be classified into 
two types: environment constraints and 
feature ones. The former includes the 
basic constraints of gates while the latter 
defines the desired features [3]. So the 
solution space for random stimulus 
generation can be illustrated in Figure 2. 
The big circle is the total solution space 
(2n) for a design with n variables. The 
small items (squares and circles) are the 
solution space under environment 
constraints, and the squares stand for the 
solution space under both environment 
and feature constraints. 

 
Figure 2: Solution spaces with different 
constraints 
 

Usually, the solution space for random 
stimulus generation (with environment 
and feature constraints) is not evenly 

distributed. BDD based method can 
easily get even distributed solutions by 
enumerating all the solutions and get 
branching probabilities of leading to 
solutions on every node. However, SAT 
solvers are usually used to find out one 
solution even if there are ALL-SAT 
techniques [12]. Essentially, ALL-SAT 
techniques get all the solutions by 
enumerating all satisfying assignments 
using a SAT solver and it is not practical 
for large circuit design problems. In order 
to achieve an even distribution using 
SAT solvers without the understanding of 
the total solution space, some works [1, 
10, 11] applied XOR constraints. 

Plaza et al. [1] emphasized an aspect of 
this theory: Adding a random XOR 
constraint into a SAT problem can reduce 
the solution space into halves with high 
probability. In [1], the constraint v*w1 = 
0 in base-2 arithmetic was expressed by 
an XOR constraint as following: 

1 2
... 1

ji i ix x x      (1) 

According to the translation method 
introduced in [13], the constraint above 
can be translated into CNF: 
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Then the XOR constraints can be 
translated into CNF as following: 
z =x y

(z x y) (x y z)

(z+x y+x y) (x y+x y) z

(x+y+z) (x+y+z) (x+y+z) (x+y+z)


     

        
     (4) 

And 
x y (x y+x y) (x+y) (x+y)       (5) 

3. Analysis of Entropy Evaluation 

In Section 3.2 of [1], in order to estimate 
cuts activities and biasing, authors 
applied the following formula to compute 
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the entropy (we normalize it by dividing 
a constant log2K) of a set of signals F. 

2
: ( ) 0

2

( ) ( )
log ( )

log
vec occ vecK

F

occ vec occ vec

K K
E

K





  (6) 

Where K is the number of the stimuli, 
and occ(vec) is the number of 
occurrences of the signal vector vec. 

This formula is quite good to evaluate 
the reduplication degree of solutions used 
by Toggle to analyze the activities of 
each portion. Assume there are K 
simulation vectors, and the number of 
bits associated with the cut of one 
portions is n. Entropy formula (6) gets its 
maximal value when every vector is 
unique. 

However, entropy cannot distinguish 
the even degree of solutions. For example, 
The Entropies of the two distributions in 
Figure 3 are both maximum 1. 

           
(a) Bad distribution     (b) Even distribution 
 

Figure 3: Different solutions 
 

Obviously the second one is more even 
since the solutions in the first one 
assemble. But entropy can not identify 
this difference. 

Furthermore, In the algorithm of 
Figure 4 in [8], the authors used 
“add_vector(solution)” to prevent getting 
the same solution, so the algorithm can 
ensure that the entropy is 1. Under this 
circumstance, entropy is inadequate to 
evaluate the solutions’ distribution. 

4. Even Distribution Evaluation 

4.1. Min-Distance-Sum Formula 

A better evaluation formula named min-
distance-sum for even degree is as 
following: 
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Where n is the bit-width of the cut in 
design portions, and k is the number of 

random generated stimuli. i is the 
distance between the adjacent solutions. 

In fact, the total solution space of a 
SAT problem with n variables is 2n, from 
0 to 2n-1. Let these possible solutions be 
distributed on a ring like Figure 4. So 
2n/k is the average distance between 
solutions. In order to evaluate the 
distribution of solutions, we use the 
absolute difference from average distance. 
This formula increases with the absolute 
distance sum, so we call it min-distance-
sum. 

0 1 22n-1

2n-1  
 

Figure 4: Solutions on a ring 
 

In [9], the authors presented the best 
case of distributing k elements evenly 
among N-solutions space when the 
remainder of N/k is r. At the bottom level, 
we distribute k solutions into N spaces, 
the best case of distances is k-r m and r 

m+1 where m is /N k   ; then at the 
second bottom level, we distribute r 
elements evenly among k space, i.e. r is 
the new k, the k is the new N. This 
process continues till the top level where 
the remainder is 0. 

The best case and the worst case of 
formula (7) are presented in theorem 1, in 
which the worst case is a little different 
from [9]. 

Theorem 1. The maximum value of D 
in formula (7) is 1 iff all the solutions are 
the same. If 2n can be divided by k, the 
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minimal value of D is 0 iff the solutions 
are distributed evenly with the average 
distance 2n/k. 

The proof is omitted owing to space 
constraints. 
 
4.2. Improved Method 

Formula (7) is adequate to estimate the 
even distributing differences between 
solutions. But for the randomization of 
stimulus generation, the differences may 
be quite trivial. For example, both the 
values of formula (7) for solutions 
(n=1000, k=4) 
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We proposed an extended form for 
formula (7) which ignores the same bits 
and compresses s bits combinations. The 
solutions in the above case can be 
divided into 3 parts: 


s
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We ignore the left x bits because they 
are the same. The following s bits are 
only 01 and 11, and if both 00 and 10 are 
UNSAT, we can compress 01, 11 to 0 
and 1. So the above solutions can be 
compressed into: 

0000 0000

0001 0100
   and    

1010 1000

1011 1100

 
 
 
 
 
  

 

The values of formula (7) are 0.5 and 0. 
Obviously, he second group is better. 

5. Experimental Results 

We use the method similar to the one 
mentioned in [1] to generate random 
stimuli. The SAT solver is Minisat 2 [8]. 
All the experiments were completed on 
an Intel Xeon 3GHz CPU with 6G RAM. 
The benchmarks are from SATLIB [15] 
and ISCAS89 [16]. Each benchmark was 
run 20 times independently. The test-
cases we chose are those whose solution 
space |Sc| > k, where k is 8 and 32. 
Consequently, all the entropy values 
calculated using the formula in [1] are 1. 

The results for the SAT benchmarks 
from SATLIB are listed in Table 1and 2. 
The first column presents the benchmark 
names. The second and the third columns 
illustrate the number of variables and 
clauses. The fourth and fifth columns 
show the processing time and the 
evaluation value using the formula (7) for 
direct random and XOR-based simulation. 
According to formula (7), the less the 
evaluation value, the better the even 
distribution. 

 
Table 1: Test results for SATLIB  (k = 8) 

Dir. Rand XOR-based 
Test-case #Var #Cls

T(s) E T(s) E 
2bitcomp_5 125 310 0.016 1.00 0.017 0.72 

2bitmax_6 252 766 0.022 1.00 0.022 0.80 
CBS_k3_n100_
m403_b10_500

100 403 0.029 1.00 0.039 0.65 

CBS_k3_n100_
m403_b10_999

100 403 0.064 0.85 0.063 0.60 

flat30-50 90 300 0.018 0.86 0.023 0.71 

flat30-100 90 300 0.019 0.86 0.021 0.71 
RTI_k3_n100
_m429_100

100 429 0.063 1.00 0.097 0.71 

RTI_k3_n100
_m429_300

100 429 0.051 0.57 0.047 0.48 
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Table 2: Test results for SATLIB  (k = 32) 

Dir. Rand XOR-based
Test-case #Var #Cls 

T(s) E T(s) E

2bitcomp_5 125 310 0.078 1.00 0.073 0.70

2bitmax_6 252 766 0.105 1.00 0.108 0.73
CBS_k3_n100_ 
m403_b10_500 

100 403 0.168 1.00 0.274 0.71

CBS_k3_n100_ 
m403_b10_999 

100 403 0.267 0.96 0.408 0.69

flat30-50 90 300 0.089 0.87 0.151 0.79

flat30-100 90 300 0.092 0.96 0.130 0.79
RTI_k3_n100 
_m429_100 

100 429 0.254 0.94 0.727 0.81

RTI_k3_n100 
_m429_300 

100 429 0.222 0.71 0.192 0.56

 
In Table 1 and 2, no benchmarks can 

be seen getting less evaluation via direct 
random method than XOR-based method. 
We can also see that the evaluation 
values are irrelative to k. This experiment 
showed that the XOR-based can get 
better even distribution than direct 
random for SAT benchmarks. On average, 
the run time of the XOR-based method is 
a bit more than the direct random one 
since there’re more constraints to handle. 

Similarly, the test results for ISACS89 
circuit benchmarks with expanded time-
frames are presented in Table 3 (k=8) and 
Table 4 (k=32). The constraints in our 
benchmarks include the basic constraints 
of gates and some user specified 
constraints which were added randomly. 
The first column is the test-case name 
while the second column shows the 
expanded time-frames. A point to be 
noted here, only the primary inputs need 
to be considered when adding XOR 
constraints as the solution space of a 
circuit is totally controlled by them. 

 
 
 
 
 
 
 

Table 3: Test results for ISCAS89 (k = 8) 
Dir. Rand XOR-based 

Circuit #Exp_T
T(s) E T(s) E 

S27 70 0.037 0.64 0.036 0.89 

S298 8 0.054 0.57 0.050 0.57 

S344 5 0.038 1.00 0.036 0.78 

S349 5 0.043 1.00 0.038 0.57 

S382 6 0.046 0.88 0.043 0.66 

S386 6 0.049 0.86 0.046 0.58 

S1196 1 0.069 1.00 0.063 0.63 

S1238 1 0.030 1.00 0.029 0.65 

 
Table 4: Test results for ISCAS89 (k = 32) 

Dir. Rand XOR-based 
Circuit #Exp_T

T(s) E T(s) E 

S27 70 0.247 0.76 0.204 0.89 

S298 8 0.341 0.84 0.263 0.63 

S344 5 0.244 1.00 0.198 0.76 

S349 5 0.266 0.99 0.202 0.61 

S382 6 0.304 0.89 0.232 0.71 

S386 6 0.327 0.77 0.239 0.59 

S1196 1 0.173 1.00 0.151 0.71 

S1238 1 0.165 1.00 0.145 0.74 

 
For most of the cases in Table 3 and 4, 

the average CPU time and evaluation of 
XOR-based method are better than direct 
random one, especially for the large 
circuit test-cases. The direct method is 
better than XOR-based for the S27 test-
case. That is because the S27 circuit had 
been expanded for 70 time-frames, too 
much reduplication led to a quite tortuous 
solution space. Consequently, XOR-
based cannot find evenly distributed 
solutions easily. On average, the run time 
of the XOR method is less. We think the 
reason is that the XOR constraints added 
with primary inputs can improve the 
constraint propagation in SAT solving. 

This experiment confirms that XOR-
based method can get evenly distributed 
solutions in stimulus generation and the 
min-distance-sum formula can 
distinguish these differences adequately. 
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6. Conclusions 

We have analyzed the random stimulus 
generation method using the entropy and 
XOR constraints in [1] and presented a 
better evaluation method named min-
distance-sum to estimate the solutions’ 
even distribution. We have proved this 
method in theory and by experiments and 
got the conclusion that our method is 
better to estimate the evenness of 
distributions and can considerably 
improve the stimulus generation guide in 
practice. 

The future works are to apply this 
method to the practical circuit stimulus 
generation. Firstly, we need to find out 
the inactive part in test using our method. 
Secondly, we can guide the test stimulus 
generation with the min-distance-sum 
strategy. 

7. Acknowledgments 

This work was funded in part by the 
National Grand Fundamental Research 
973 Program of China under Grant 
No.2005CB321605 and the National 
Natural Science Foundation of China 
under Grant No.90607001. 

8. References 

[1] Stephen M. Plaza, Igor L. Markov, and 
Valeria Bertacco, “Random Stimulus 
Generation using Entropy and XOR 
Constraints”, in Proc. of the conference on 
Design, Automation and Test in Europe, 2008. 
pp. 664-669. 
[2] "Constrained-random test generation and 
functional coverage with Vera", Technical 
report, Synopsys, Inc, Feb, 2003. 
[3] Jun Yuan, Carl Pixley, Adnan Aziz. 
Constraint-Based Verification. Springer US, 
Jan. 2006. 
[4] Leena Singh, Leonard Drucker. Advanced 
Verification Techniques: A SystemC Based 
Approach for Successful Tapeout. Springer 
US, 2004. 

[5] SystemC Verification Working Group. 
“Systemc verification standard specification”. 
OSCI website: http://www.systemc.org, May. 
2003. 
[6] J.P. Marques-Silva and K.A. Sakallah, 
“GRASP—A New Search Algorithm for 
Satisfiability,” in Proc. of ICCAD’96. 1997, 
220-227. 
[7] M.W. Moskewicz, C.F. Madigan, Y. Zhao, 
L. Zhang, and S. Malik, “Chaff: Engineering 
an Efficient SAT Solver,” in Proc. of DAC'01. 
2001, 530-535. 
[8] N. Eén and N. Sörensson, “An extensible 
SAT solver,” in Proc. of International 
Conference on Theory and Applications of 
Satisfiability Testing. 2003, 502-518. 
[9] A. J. Compton, "An Algorithm for the 
Even Distribution of Entities in One 
Dimension". The Computer Journal, 1985 
28(5). pp. 530-537. 
[10] Carla P. Gomes, Ashish Sabharwal, Bart 
Selman, “Near-Uniform Sampling of 
Combinatorial Spaces Using XOR 
Constraints” in Proc. of the 20th Annual 
Conference on Neural Information Processing 
Systems, Vancouver, BC, Canada, Dec 2006. 
pp. 481-488. 
[11] Carla P. Gomes, Willem-Jan van Hoeve, 
Ashish Sabharwal, Bart Selman, “Counting 
CSP Solutions Using Generalized XOR 
Constraints” in Proc. of the 22nd Conference 
on Artificial Intelligence, Vancouver, BC, 
Canada, July 2007. pp.204-209. 
[12] B. Li, M. S. Hsiao, and S. Sheng, “A 
novel SAT all-solutions for efficient preimage 
computation” in Proc. of the Conference on 
Design, Automation and Test in Europe, 
March 2004. pp.380–384. 
[13] T.Larrabee, "Test pattern generation 
using Boolean satisfiability" IEEE Trans. 
Computer-Aided Design of Integrated Circuits 
and Systems, Volume 11, Jan. 1992, pp. 4-15. 
[14] 
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.
html 
[15] 
http://www.ece.vt.edu/mhsiao/iscas89.html 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                6




