

Even Distribution Evaluation in Random
Stimulus Generation

Zhiqiu Kong, Shujun Deng, Jinian Bian, Yanni Zhao

Department of Computer Science and Technology, Tsinghua University, Beijing, China
kzq07@mails.tsinghua.edu.cn, dengsj04@mails.tsinghua.edu.cn,

bianjn@tsinghua.edu.cn, zhaoyn05@mails.tsinghua.edu.cn

Abstract

This paper has two contributions: First is
to analyze the entropy evaluation for
random stimulus generation in one paper
of DATE 2008 [1]; second is to present
better methods to evaluate the solutions’
even distribution for random stimulus
generation. An evaluation strategy called
min-distance-sum takes the solution
space as a ring and calculates the adjacent
solutions’ distances. Experimental results
for SAT and circuit benchmarks showed
that our method can evaluate the even
degree better than entropy, and also
prove that the XOR-based method can
improve the distribution of solutions for
random stimulus generation.

Keywords: Random stimulus generation,
design verification, even distribution,
SAT

1. Introduction

Functional verification has become the
main bottleneck in the design process and
design teams spend 50% to 70% of their
time verifying designs. For large scale
designs, formal verification is difficult, so
simulation is still the main stream in
industry. However, constrained random
stimulus generation which is between
formal verification and simulation is
more and more important, especially
during the move to high level design and
verification [2, 3, 4, 5]. Most of

constrained random stimulus generation
methods are using BDD model and BDD
random walks [3] where space explosion
easily occurs. One substitute is to use
SAT-based methods due to the rapid
efficiency improvements of SAT solvers
in the last decade [6, 7, 8]. However,
SAT-based constrained randomization
can not directly get even distribution [9].
The same problem occurs in random
stimulus generation [10]. Fortunately,
there have been some works using XOR
constraints [1, 10, 11] to achieve even
distribution.

In [1], authors presented a tool named
Toggle to find out inadequately
sensitized areas during simulation and
automatically simulate those areas with
uniform distributed solutions. In order to
estimate the activity and biasing of
solutions, the authors adopted entropy.

However, we found entropy is
meaningless when evaluating the even
degree of solutions. In this paper, we
present better evaluation strategies based
on min-distance-sum to guide the random
stimulus generation. These strategies treat
the solution space as a ring and calculate
distances of adjacent solutions to ensure a
most even distribution.

The remainder of this paper is
organized as follows: Section 2 describes
some backgrounds of achieving even
distribution in random stimulus
generation. Shortage of entropy in [1] is
analyzed in Section 3. Our new
evaluation strategy is presented in

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

Section 4. In Section 5, the experiments
and comparisons are presented. Section 6
concludes the paper.

2. Background

The framework of random stimulus
generation is shown in Figure 1. Vectors
generated by random generator are sent
to a design under test (DUT), then a
monitor checks the results according to
expected results and calculate the
coverage.

00001000
10000001
01010101
01010111
11100101

Design
Under Test

(DUT)

00010
10001
10101
01111
11101

Expected ResultsRandom Vectors

Monitor
Figure 1: Test framework of random stimulus
generation

Usually, the constraints in random
stimulus generation can be classified into
two types: environment constraints and
feature ones. The former includes the
basic constraints of gates while the latter
defines the desired features [3]. So the
solution space for random stimulus
generation can be illustrated in Figure 2.
The big circle is the total solution space
(2n) for a design with n variables. The
small items (squares and circles) are the
solution space under environment
constraints, and the squares stand for the
solution space under both environment
and feature constraints.

Figure 2: Solution spaces with different
constraints

Usually, the solution space for random
stimulus generation (with environment
and feature constraints) is not evenly

distributed. BDD based method can
easily get even distributed solutions by
enumerating all the solutions and get
branching probabilities of leading to
solutions on every node. However, SAT
solvers are usually used to find out one
solution even if there are ALL-SAT
techniques [12]. Essentially, ALL-SAT
techniques get all the solutions by
enumerating all satisfying assignments
using a SAT solver and it is not practical
for large circuit design problems. In order
to achieve an even distribution using
SAT solvers without the understanding of
the total solution space, some works [1,
10, 11] applied XOR constraints.

Plaza et al. [1] emphasized an aspect of
this theory: Adding a random XOR
constraint into a SAT problem can reduce
the solution space into halves with high
probability. In [1], the constraint v*w1 =
0 in base-2 arithmetic was expressed by
an XOR constraint as following:

1 2
... 1

ji i ix x x    (1)

According to the translation method
introduced in [13], the constraint above
can be translated into CNF:

1 2 31 2 1

1 2 1

() ()

... () (1)
j

i i i

j j i j

y x x y y x

y y x y  

     

    

 2)

or
1 2

1

1 1 2

2 1 1

() ()

... () (1)
j j

i i

j i j j i

x y y x y

y x y y x
  

    

     
 (3)

Then the XOR constraints can be
translated into CNF as following:
z =x y

(z x y) (x y z)

(z+x y+x y) (x y+x y) z

(x+y+z) (x+y+z) (x+y+z) (x+y+z)


     

        
    (4)

And
x y (x y+x y) (x+y) (x+y)      (5)

3. Analysis of Entropy Evaluation

In Section 3.2 of [1], in order to estimate
cuts activities and biasing, authors
applied the following formula to compute

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

the entropy (we normalize it by dividing
a constant log2K) of a set of signals F.

2
: () 0

2

() ()
log ()

log
vec occ vecK

F

occ vec occ vec

K K
E

K





 (6)

Where K is the number of the stimuli,
and occ(vec) is the number of
occurrences of the signal vector vec.

This formula is quite good to evaluate
the reduplication degree of solutions used
by Toggle to analyze the activities of
each portion. Assume there are K
simulation vectors, and the number of
bits associated with the cut of one
portions is n. Entropy formula (6) gets its
maximal value when every vector is
unique.

However, entropy cannot distinguish
the even degree of solutions. For example,
The Entropies of the two distributions in
Figure 3 are both maximum 1.

(a) Bad distribution (b) Even distribution

Figure 3: Different solutions

Obviously the second one is more even
since the solutions in the first one
assemble. But entropy can not identify
this difference.

Furthermore, In the algorithm of
Figure 4 in [8], the authors used
“add_vector(solution)” to prevent getting
the same solution, so the algorithm can
ensure that the entropy is 1. Under this
circumstance, entropy is inadequate to
evaluate the solutions’ distribution.

4. Even Distribution Evaluation

4.1. Min-Distance-Sum Formula

A better evaluation formula named min-
distance-sum for even degree is as
following:

1

i
0

1

1
i

0 1

2

1
2

, 1, 2, ..., 1

2 , 0

nk

i

n

i i

n
k

k
D

k
k

S S i k

S S i











 




  
     

 (7)

Where n is the bit-width of the cut in
design portions, and k is the number of

random generated stimuli. i is the
distance between the adjacent solutions.

In fact, the total solution space of a
SAT problem with n variables is 2n, from
0 to 2n-1. Let these possible solutions be
distributed on a ring like Figure 4. So
2n/k is the average distance between
solutions. In order to evaluate the
distribution of solutions, we use the
absolute difference from average distance.
This formula increases with the absolute
distance sum, so we call it min-distance-
sum.

0 1 22n-1

2n-1

Figure 4: Solutions on a ring

In [9], the authors presented the best
case of distributing k elements evenly
among N-solutions space when the
remainder of N/k is r. At the bottom level,
we distribute k solutions into N spaces,
the best case of distances is k-r m and r

m+1 where m is /N k   ; then at the
second bottom level, we distribute r
elements evenly among k space, i.e. r is
the new k, the k is the new N. This
process continues till the top level where
the remainder is 0.

The best case and the worst case of
formula (7) are presented in theorem 1, in
which the worst case is a little different
from [9].

Theorem 1. The maximum value of D
in formula (7) is 1 iff all the solutions are
the same. If 2n can be divided by k, the

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

minimal value of D is 0 iff the solutions
are distributed evenly with the average
distance 2n/k.

The proof is omitted owing to space
constraints.

4.2. Improved Method

Formula (7) is adequate to estimate the
even distributing differences between
solutions. But for the randomization of
stimulus generation, the differences may
be quite trivial. For example, both the
values of formula (7) for solutions
(n=1000, k=4)

1000

1111......1111101000

1111......1111101001

1111......1111111010

1111......1111111011








and

1000

1111......1111101000

1111......1111101100

1111......1111111000

1111......1111111100








are
10001 3

i i
0 0

i
1 1001

2 2

4 2 2
()

1 3 32 2
4

nk

n
i i

n

k
D

k k
k



 



   

     


 

We proposed an extended form for
formula (7) which ignores the same bits
and compresses s bits combinations. The
solutions in the above case can be
divided into 3 parts:


s

1111......1111101000

1111......1111101100

1111......1111111000

1111......1111111100
yx










We ignore the left x bits because they
are the same. The following s bits are
only 01 and 11, and if both 00 and 10 are
UNSAT, we can compress 01, 11 to 0
and 1. So the above solutions can be
compressed into:

0000 0000

0001 0100
 and

1010 1000

1011 1100

 
 
 
 
 
  

The values of formula (7) are 0.5 and 0.
Obviously, he second group is better.

5. Experimental Results

We use the method similar to the one
mentioned in [1] to generate random
stimuli. The SAT solver is Minisat 2 [8].
All the experiments were completed on
an Intel Xeon 3GHz CPU with 6G RAM.
The benchmarks are from SATLIB [15]
and ISCAS89 [16]. Each benchmark was
run 20 times independently. The test-
cases we chose are those whose solution
space |Sc| > k, where k is 8 and 32.
Consequently, all the entropy values
calculated using the formula in [1] are 1.

The results for the SAT benchmarks
from SATLIB are listed in Table 1and 2.
The first column presents the benchmark
names. The second and the third columns
illustrate the number of variables and
clauses. The fourth and fifth columns
show the processing time and the
evaluation value using the formula (7) for
direct random and XOR-based simulation.
According to formula (7), the less the
evaluation value, the better the even
distribution.

Table 1: Test results for SATLIB (k = 8)

Dir. Rand XOR-based
Test-case #Var #Cls

T(s) E T(s) E
2bitcomp_5 125 310 0.016 1.00 0.017 0.72

2bitmax_6 252 766 0.022 1.00 0.022 0.80
CBS_k3_n100_
m403_b10_500

100 403 0.029 1.00 0.039 0.65

CBS_k3_n100_
m403_b10_999

100 403 0.064 0.85 0.063 0.60

flat30-50 90 300 0.018 0.86 0.023 0.71

flat30-100 90 300 0.019 0.86 0.021 0.71
RTI_k3_n100
_m429_100

100 429 0.063 1.00 0.097 0.71

RTI_k3_n100
_m429_300

100 429 0.051 0.57 0.047 0.48

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

Table 2: Test results for SATLIB (k = 32)

Dir. Rand XOR-based
Test-case #Var #Cls

T(s) E T(s) E

2bitcomp_5 125 310 0.078 1.00 0.073 0.70

2bitmax_6 252 766 0.105 1.00 0.108 0.73
CBS_k3_n100_
m403_b10_500

100 403 0.168 1.00 0.274 0.71

CBS_k3_n100_
m403_b10_999

100 403 0.267 0.96 0.408 0.69

flat30-50 90 300 0.089 0.87 0.151 0.79

flat30-100 90 300 0.092 0.96 0.130 0.79
RTI_k3_n100
_m429_100

100 429 0.254 0.94 0.727 0.81

RTI_k3_n100
_m429_300

100 429 0.222 0.71 0.192 0.56

In Table 1 and 2, no benchmarks can

be seen getting less evaluation via direct
random method than XOR-based method.
We can also see that the evaluation
values are irrelative to k. This experiment
showed that the XOR-based can get
better even distribution than direct
random for SAT benchmarks. On average,
the run time of the XOR-based method is
a bit more than the direct random one
since there’re more constraints to handle.

Similarly, the test results for ISACS89
circuit benchmarks with expanded time-
frames are presented in Table 3 (k=8) and
Table 4 (k=32). The constraints in our
benchmarks include the basic constraints
of gates and some user specified
constraints which were added randomly.
The first column is the test-case name
while the second column shows the
expanded time-frames. A point to be
noted here, only the primary inputs need
to be considered when adding XOR
constraints as the solution space of a
circuit is totally controlled by them.

Table 3: Test results for ISCAS89 (k = 8)
Dir. Rand XOR-based

Circuit #Exp_T
T(s) E T(s) E

S27 70 0.037 0.64 0.036 0.89

S298 8 0.054 0.57 0.050 0.57

S344 5 0.038 1.00 0.036 0.78

S349 5 0.043 1.00 0.038 0.57

S382 6 0.046 0.88 0.043 0.66

S386 6 0.049 0.86 0.046 0.58

S1196 1 0.069 1.00 0.063 0.63

S1238 1 0.030 1.00 0.029 0.65

Table 4: Test results for ISCAS89 (k = 32)

Dir. Rand XOR-based
Circuit #Exp_T

T(s) E T(s) E

S27 70 0.247 0.76 0.204 0.89

S298 8 0.341 0.84 0.263 0.63

S344 5 0.244 1.00 0.198 0.76

S349 5 0.266 0.99 0.202 0.61

S382 6 0.304 0.89 0.232 0.71

S386 6 0.327 0.77 0.239 0.59

S1196 1 0.173 1.00 0.151 0.71

S1238 1 0.165 1.00 0.145 0.74

For most of the cases in Table 3 and 4,

the average CPU time and evaluation of
XOR-based method are better than direct
random one, especially for the large
circuit test-cases. The direct method is
better than XOR-based for the S27 test-
case. That is because the S27 circuit had
been expanded for 70 time-frames, too
much reduplication led to a quite tortuous
solution space. Consequently, XOR-
based cannot find evenly distributed
solutions easily. On average, the run time
of the XOR method is less. We think the
reason is that the XOR constraints added
with primary inputs can improve the
constraint propagation in SAT solving.

This experiment confirms that XOR-
based method can get evenly distributed
solutions in stimulus generation and the
min-distance-sum formula can
distinguish these differences adequately.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

6. Conclusions

We have analyzed the random stimulus
generation method using the entropy and
XOR constraints in [1] and presented a
better evaluation method named min-
distance-sum to estimate the solutions’
even distribution. We have proved this
method in theory and by experiments and
got the conclusion that our method is
better to estimate the evenness of
distributions and can considerably
improve the stimulus generation guide in
practice.

The future works are to apply this
method to the practical circuit stimulus
generation. Firstly, we need to find out
the inactive part in test using our method.
Secondly, we can guide the test stimulus
generation with the min-distance-sum
strategy.

7. Acknowledgments

This work was funded in part by the
National Grand Fundamental Research
973 Program of China under Grant
No.2005CB321605 and the National
Natural Science Foundation of China
under Grant No.90607001.

8. References

[1] Stephen M. Plaza, Igor L. Markov, and
Valeria Bertacco, “Random Stimulus
Generation using Entropy and XOR
Constraints”, in Proc. of the conference on
Design, Automation and Test in Europe, 2008.
pp. 664-669.
[2] "Constrained-random test generation and
functional coverage with Vera", Technical
report, Synopsys, Inc, Feb, 2003.
[3] Jun Yuan, Carl Pixley, Adnan Aziz.
Constraint-Based Verification. Springer US,
Jan. 2006.
[4] Leena Singh, Leonard Drucker. Advanced
Verification Techniques: A SystemC Based
Approach for Successful Tapeout. Springer
US, 2004.

[5] SystemC Verification Working Group.
“Systemc verification standard specification”.
OSCI website: http://www.systemc.org, May.
2003.
[6] J.P. Marques-Silva and K.A. Sakallah,
“GRASP—A New Search Algorithm for
Satisfiability,” in Proc. of ICCAD’96. 1997,
220-227.
[7] M.W. Moskewicz, C.F. Madigan, Y. Zhao,
L. Zhang, and S. Malik, “Chaff: Engineering
an Efficient SAT Solver,” in Proc. of DAC'01.
2001, 530-535.
[8] N. Eén and N. Sörensson, “An extensible
SAT solver,” in Proc. of International
Conference on Theory and Applications of
Satisfiability Testing. 2003, 502-518.
[9] A. J. Compton, "An Algorithm for the
Even Distribution of Entities in One
Dimension". The Computer Journal, 1985
28(5). pp. 530-537.
[10] Carla P. Gomes, Ashish Sabharwal, Bart
Selman, “Near-Uniform Sampling of
Combinatorial Spaces Using XOR
Constraints” in Proc. of the 20th Annual
Conference on Neural Information Processing
Systems, Vancouver, BC, Canada, Dec 2006.
pp. 481-488.
[11] Carla P. Gomes, Willem-Jan van Hoeve,
Ashish Sabharwal, Bart Selman, “Counting
CSP Solutions Using Generalized XOR
Constraints” in Proc. of the 22nd Conference
on Artificial Intelligence, Vancouver, BC,
Canada, July 2007. pp.204-209.
[12] B. Li, M. S. Hsiao, and S. Sheng, “A
novel SAT all-solutions for efficient preimage
computation” in Proc. of the Conference on
Design, Automation and Test in Europe,
March 2004. pp.380–384.
[13] T.Larrabee, "Test pattern generation
using Boolean satisfiability" IEEE Trans.
Computer-Aided Design of Integrated Circuits
and Systems, Volume 11, Jan. 1992, pp. 4-15.
[14]
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.
html
[15]
http://www.ece.vt.edu/mhsiao/iscas89.html

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

